3 research outputs found

    Design and Modeling of 9 Degrees of Freedom Redundant Robotic Manipulator

    Get PDF
    In disaster areas, robot manipulators are used to rescue and clearance of sites. Because of the damaged area, they encounter disturbances like obstacles, and limited workspace to explore the area and to achieve the location of the victims. Increasing the degrees of freedom is required to boost the adaptability of manipulators to avoid disturbances, and to obtain the fast desired position and precise movements of the end-effector. These robot manipulators offer a reliable way to handle the barrier challenges since they can search in places that humans can't reach. In this research paper, the 9-DOF robotic manipulator is designed, and an analytical model is developed to examine the system’s behavior in different scenarios. The kinematic and dynamic representation of the proposed model is analyzed to obtain the translation or rotation, and joint torques to achieve the expected position, velocity, and acceleration respectively. The number of degrees may be raised to avoid disturbances, and to obtain the fast desired position and precise movements of the end-effector. The simulation of developed models is performed to ensure the adaptable movement of the manipulators working in distinct configurations and controlling their motion thoroughly and effectively. In the proposed configuration the joints can easily be moved to achieve the desired position of the end-effector and the results are satisfactory. The simulation results show that the redundant manipulator achieves the victim location with various configurations of the manipulator. Results reveal the effectiveness and efficacy of the proposed system

    Design and Implementation of Force Sensation and Feedback Systems for Telepresence Robotic Arm

    No full text
    Humans put their own lives aside to save other human’s life and perform risky and dangerous activities. The risk can be reduced by using new technologies. This research study focuses on telepresence and teleoperation systems with motion and force control systems that replace humans in hazardous workspaces. In telepresence, the system helps humans to visualize the environment in real-time. In teleoperation, the system provides sensation to assist human beings in performing out-of-reach and dangerous operations safely as in real, providing a shadow hand to the operator. In this study, a system is developed that consists of a slave robotic arm and a master wearable device with bidirectional communication between the robotic arm and operator (master wearable device). It also presents a gesture-controlled robotic arm that uses sensors to read and translate human arm movements as commands. The slave robotic arm, senses applied force on an object and a master wearable device develops the force according to sensed force, in a result operator senses/feels the same object in the control room at distance. The slave robotic arm also mimics the operator arm to reach the proper position of an object. Several experiments were conducted with untrained personnel and satisfactory results were yielded, which showed that the motion and force replication is 90-95% accurate
    corecore